75 research outputs found

    The Measure-theoretic Identity Underlying Transient Fluctuation Theorems

    Full text link
    We prove a measure-theoretic identity that underlies all transient fluctuation theorems (TFTs) for entropy production and dissipated work in inhomogeneous deterministic and stochastic processes, including those of Evans and Searles, Crooks, and Seifert. The identity is used to deduce a tautological physical interpretation of TFTs in terms of the arrow of time, and its generality reveals that the self-inverse nature of the various trajectory and process transformations historically relied upon to prove TFTs, while necessary for these theorems from a physical standpoint, is not necessary from a mathematical one. The moment generating functions of thermodynamic variables appearing in the identity are shown to converge in general only in a vertical strip in the complex plane, with the consequence that a TFT that holds over arbitrary timescales may fail to give rise to an asymptotic fluctuation theorem for any possible speed of the corresponding large deviation principle. The case of strongly biased birth-death chains is presented to illustrate this phenomenon. We also discuss insights obtained from our measure-theoretic formalism into the results of Saha et. al. on the breakdown of TFTs for driven Brownian particles

    Fluctuation Theorems for Entropy Production and Heat Dissipation in Periodically Driven Markov Chains

    Get PDF
    Asymptotic fluctuation theorems are statements of a Gallavotti-Cohen symmetry in the rate function of either the time-averaged entropy production or heat dissipation of a process. Such theorems have been proved for various general classes of continuous-time deterministic and stochastic processes, but always under the assumption that the forces driving the system are time independent, and often relying on the existence of a limiting ergodic distribution. In this paper we extend the asymptotic fluctuation theorem for the first time to inhomogeneous continuous-time processes without a stationary distribution, considering specifically a finite state Markov chain driven by periodic transition rates. We find that for both entropy production and heat dissipation, the usual Gallavotti-Cohen symmetry of the rate function is generalized to an analogous relation between the rate functions of the original process and its corresponding backward process, in which the trajectory and the driving protocol have been time-reversed. The effect is that spontaneous positive fluctuations in the long time average of each quantity in the forward process are exponentially more likely than spontaneous negative fluctuations in the backward process, and vice-versa, revealing that the distributions of fluctuations in universes in which time moves forward and backward are related. As an additional result, the asymptotic time-averaged entropy production is obtained as the integral of a periodic entropy production rate that generalizes the constant rate pertaining to homogeneous dynamics

    A Taxonomy of Causality-Based Biological Properties

    Get PDF
    We formally characterize a set of causality-based properties of metabolic networks. This set of properties aims at making precise several notions on the production of metabolites, which are familiar in the biologists' terminology. From a theoretical point of view, biochemical reactions are abstractly represented as causal implications and the produced metabolites as causal consequences of the implication representing the corresponding reaction. The fact that a reactant is produced is represented by means of the chain of reactions that have made it exist. Such representation abstracts away from quantities, stoichiometric and thermodynamic parameters and constitutes the basis for the characterization of our properties. Moreover, we propose an effective method for verifying our properties based on an abstract model of system dynamics. This consists of a new abstract semantics for the system seen as a concurrent network and expressed using the Chemical Ground Form calculus. We illustrate an application of this framework to a portion of a real metabolic pathway

    Non-equilibrium statistical mechanics: From a paradigmatic model to biological transport

    Full text link
    Unlike equilibrium statistical mechanics, with its well-established foundations, a similar widely-accepted framework for non-equilibrium statistical mechanics (NESM) remains elusive. Here, we review some of the many recent activities on NESM, focusing on some of the fundamental issues and general aspects. Using the language of stochastic Markov processes, we emphasize general properties of the evolution of configurational probabilities, as described by master equations. Of particular interest are systems in which the dynamics violate detailed balance, since such systems serve to model a wide variety of phenomena in nature. We next review two distinct approaches for investigating such problems. One approach focuses on models sufficiently simple to allow us to find exact, analytic, non-trivial results. We provide detailed mathematical analyses of a one-dimensional continuous-time lattice gas, the totally asymmetric exclusion process (TASEP). It is regarded as a paradigmatic model for NESM, much like the role the Ising model played for equilibrium statistical mechanics. It is also the starting point for the second approach, which attempts to include more realistic ingredients in order to be more applicable to systems in nature. Restricting ourselves to the area of biophysics and cellular biology, we review a number of models that are relevant for transport phenomena. Successes and limitations of these simple models are also highlighted.Comment: 72 pages, 18 figures, Accepted to: Reports on Progress in Physic
    • 

    corecore